DATOS DE IDENTIFICACIÓN		
Nombre de la asignatura	Fundamentos de métodos cromatográficos:	
	teoría y práctica	
Unidad Regional Centro		
División	Ciencias Biológicas y de la Salud	
Departamento	Departamento de Investigación y Posgrado en	
	Alimentos	
Programa	Maestría en Ciencias y Tecnología de Alimentos	
Carácter	Obligatorio () Especializante (X)	
Horas teoría 3	Horas práctica 0	
Valor en créditos	6	
OD IETIVO OENEDAL		

OBJETIVO GENERAL

El estudiante conocerá a profundidad los fundamentos de los diversos métodos cromatográficos y su aplicación en la separación y purificación de varios tipos de moléculas, con énfasis en proteínas, empleando una combinación de métodos físicos y químicos.

OBJETIVOS ESPECÍFICOS

- El alumno conocerá los fundamentos y aplicaciones de las técnicas
- cromatográficas más usuales para separar y purificar proteínas. El alumno será capaz de analizar con espíritu crítico las técnicas más útiles para cada análisis concreto.
- El alumno podrá evaluar las técnicas más adecuadas en función del tipo de muestra, instrumentación disponible, número de muestras, etc.
- El alumno sabrá comparar las diferentes técnicas que se pueden aplicar a una misma muestra.

CONTENIDO SINTÉTICO

Orden	Tomo	
	Tema	
1	Soluciones acuosas.	
2	Interacciones no covalentes.	
3	Propiedades ácido/base.	
4	Propiedades amortiguadoras.	
5	Composición y propiedades de proteínas, estructura y funcionalidad.	
6	Aminoácidos: Estructura, nomenclatura, propiedades químicas.	
7	Estructuras de proteínas.	
8	Primaria (Enlace peptídico, homología y evolución).	
9	Secuenciación y métodos de análisis.	
10	Secundaria (hélices, hojas, gráfico de Ramachandran)	
11	Terciaria (motifs proteicos y estructuras).	
12	Cuaternaria (métodos de modelación –RasMol, Protein Explorer).	
13	Swiss Prot (comparación de estructuras, desnaturalización).	
14	Estabilidad de proteínas: Fuerzas electrostáticas, interacciones	
	iónicas, interacciones dipolo-dipolo, puentes de hidrógeno, fuerzas	
	hidrofóbicas, puentes disulfuro.	
15	Funcionalidad de proteínas (Interacciones proteína-ligando,	
	cooperatividad, cinética enzimática (ecuación de Michaelis-Menten,	
	gráfica de Lineweaver-Burk, gráfica de Dixon), mecanismos de	

	Inhibición enzimática (inhibición competitiva, no competitiva, combinada).
16	Aislamiento de Proteínas: Teoría y Práctica.
17	Extracción y aislamiento.
18	Métodos de precipitación (sales, solventes, mecanismos).
19	Detección de proteína (absorción en ultravioleta, ensayos
	enzimáticos-proteasas, amilasas, lipasas -, tinción en gel de
	poliacrilamida (azul de Coomassie, nitrato de plata).
20	Procedimientos electroforéticos (electroforesis disociante y no
	disociante)
21	Western Blot.
22	Técnicas Cromatográficas: Teoría y Práctica.
23	Cromatografía de filtración en gel.
24	Cromatografía de intercambio iónico (aniónica y catiónica,
	selección de soportes, formación de gradientes para elusión,
	selección de columnas).
25	Cromatografía de interacción hidrofóbica.
26	Cromatografía de afinidad.
27	Cromatografía de Alta Resolución (HPLC) – Exclusión molecular,
	fase reversa.

MODALIDADES O FORMAS DE CONDUCCIÓN DE LOS PROCESOS DE ENSEÑANZA-APRENDIZAJE

- Discusión grupal de los temas ofrecidos en clase.
- Análisis de reportes científicos acordes al o los temas ofrecidos en el programa.
- Elaboración de un reporte crítico sobre aislamiento y purificación de biomoléculas.

MODALIDADES DE EVALUACIÓN Y ACREDITACIÓN

Aspecto	Ponderación
Examenes parciales	70%
Reportes de sesiones de laboratorio	10%
Asistencia y participacion	5%
Resumen de Articulos de Lectura	5%
Proyecto de Aplicacion de Extraccion y Cromatografia a su	10%
tema de tesis que incluya 20 referencias al menos	

BIBLIOGRAFIA, DOCUMENTACION Y MATERIALES DE APOYO

Autor	Título	Editorial	Edición	Año
Boyer R.	Modern Experimental	Addison Wesley Longman. New York	3 ^a	2000
	Biochemistry			
Branden C. and	Introduction to	Garland Publishing,	2 ^a	1991
Tooze J.	protein structure	Inc. New York.		
Copeland R.A.	Methods for Protein Analysis. A practical guide to laboratory protocols	Chapman & Hall. New York.	1ª	1994
Deutscher M.P.	Guide to Protein	Academic Press,	Vol. 182	1990

	Purification. Methods in Enzymology	Inc. New York.		
Findlay J.B.C. and Geisow M.J.	Protein Sequencing: A Practical Approach	Oxford University Press. New York.		1989
Janson J.C.	Protein purification. Principles, high resolution methods, and applications	VCH Publishers, Inc. New York.	3ª	2011
Kruger J.E. and Bietz J.A.	High- Performance Liquid Chromatography of Cereal and Legume Proteins	American Association of Cereal Chemists. St. Paul, MN.	Vol. 6, No. 5	1994
Segel I.H.	Biochemical calculations	John Wiley & Sons. New York.	1 ^a	1976
Voet D. and Voet J.G.	Biochemistry	John Wiley and Sons. New York.	2 ^a	1955
Whitaker J.R., Alphon G.J., and Wong D.W.S.	Handbook of Food Enzymology	Marcel Dekker, Inc. New York.		2003
Snyder L.R., Kirkland, J.J. and Glajch J.L.	Practical HPLC Method Development	John Wiley & Sons, Inc.	2a	1997
Cunico R.L., Gooding K.M., Wehr T.	Basic HPLC and CE of Biomolecules	Bay Bioanalytical Laboratory		1998
Dong M.W.	Modern HPLC for Practicing Scientists	John Wiley & Sons, Inc.	1 ^a	2006

PERFIL ACADÉMICO DESEABLE DEL RESPONSABLE DE LA ASIGNATURA

Deberá cumplir con lo establecido en los artículos 17, 18 y 19 del Reglamento de Estudios de Posgrado vigente. Con el fin de cubrir los requerimientos externos de evaluación, es deseable que el profesor del posgrado, tenga el grado de doctor en área afín dentro del campo de las Ciencias de los Alimentos, posea experiencia docente en los temas de la asignatura, y además, que demuestre capacidad en el manejo de información con un enfoque interdisciplinario.

NOMBRE Y FIRMA	DE QUIEN DISENO CA	RTA DESCRIPTIVA

Dra. Beatriz Montaño Leyvayululul